3.1286 \(\int \frac {1}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx\)

Optimal. Leaf size=163 \[ \frac {i \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a+i b} \sqrt {c+i d}}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a-i b} \sqrt {c-i d}} \]

[Out]

-I*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))/f/(a-I*b)^(1/2)/(c-I*d)^
(1/2)+I*arctanh((c+I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))/f/(a+I*b)^(1/2)/(c+
I*d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {3575, 912, 93, 208} \[ \frac {i \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a+i b} \sqrt {c+i d}}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a-i b} \sqrt {c-i d}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

((-I)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a - I*
b]*Sqrt[c - I*d]*f) + (I*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*
x]])])/(Sqrt[a + I*b]*Sqrt[c + I*d]*f)

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 912

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[c*d^2 + a*e^2,
 0] &&  !IntegerQ[m] &&  !IntegerQ[n]

Rule 3575

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n)/(1 + ff^2*x^2), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {i}{2 (i-x) \sqrt {a+b x} \sqrt {c+d x}}+\frac {i}{2 (i+x) \sqrt {a+b x} \sqrt {c+d x}}\right ) \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {i \operatorname {Subst}\left (\int \frac {1}{(i-x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac {i \operatorname {Subst}\left (\int \frac {1}{(i+x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac {i \operatorname {Subst}\left (\int \frac {1}{-a+i b-(-c+i d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{f}+\frac {i \operatorname {Subst}\left (\int \frac {1}{a+i b-(c+i d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{f}\\ &=-\frac {i \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {a-i b} \sqrt {c-i d} f}+\frac {i \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {a+i b} \sqrt {c+i d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 166, normalized size = 1.02 \[ \frac {i \left (\frac {\tanh ^{-1}\left (\frac {\sqrt {-c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {-a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {-a+i b} \sqrt {-c+i d}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {a+i b} \sqrt {c+i d}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

(I*(ArcTanh[(Sqrt[-c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a + I*b]*Sqrt[c + d*Tan[e + f*x]])]/(Sqrt[-a + I*
b]*Sqrt[-c + I*d]) + ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])
]/(Sqrt[a + I*b]*Sqrt[c + I*d])))/f

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was
done assuming [a,b,c,d]=[80,76,-76,-78]Evaluation time: 90.64index.cc index_m operator + Error: Bad Argument V
alue

________________________________________________________________________________________

maple [F(-1)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a +b \tan \left (f x +e \right )}\, \sqrt {c +d \tan \left (f x +e \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x)

[Out]

int(1/(a+b*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((2*b*d+2*a*c)^2>0)', see `ass
ume?` for more details)Is ((2*b*d+2*a*c)^2    -4*((a*c-b*d)^2       -((-a*d)-b*c)        *(a*d+b*c)))    ^2 po
sitive or zero?

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.01 \[ \text {Hanged} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*tan(e + f*x))^(1/2)*(c + d*tan(e + f*x))^(1/2)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b \tan {\left (e + f x \right )}} \sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e))**(1/2)/(c+d*tan(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*tan(e + f*x))*sqrt(c + d*tan(e + f*x))), x)

________________________________________________________________________________________